If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-80=0
a = 1; b = 1; c = -80;
Δ = b2-4ac
Δ = 12-4·1·(-80)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{321}}{2*1}=\frac{-1-\sqrt{321}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{321}}{2*1}=\frac{-1+\sqrt{321}}{2} $
| 3x-18/3^x=7 | | 1/2⋅(x−7)=4 | | 12⋅(x−7)=4 | | 4x+2x+2=12 | | (〖1/36)〗^(3-x)〖(1/6)〗^x=216 | | 4x+14+3x-30+x=25 | | 2a=111 | | -12–4x=-24 | | 4^(x^2)=(1/2)x-6 | | 12x+15=15x | | 12/35a=96/175 | | 16(1/2)5x+1-2=0 | | 4–2x=10 | | 70(45)=126(1+10x) | | 9x+3=2x+25 | | 4(x–3)=13 | | 13(20+x)=910 | | y=-25*3+200 | | 20(13+x)=910 | | 3x–7=9–5x | | 2x–14=20 | | 3(x+5)=18* | | 3x/7-4=2/7+5x | | 6(9)=6(2x-7) | | 3(d–5)=15 | | 7^x-1.4^3x=5^2x | | 10=50x+x4 | | 3/7x-4=2/7+5x | | 43/30=31/10+k | | 7x-54=15x+10 | | 3⋅(2x−1)=2x+17 | | 50(70)=60(11x-4) |